Three Mile Island Unit 2
Key Decisions and Important Events for Removing the Damaged Fuel

Presented at the
1st International Forum on the Decommissioning of the
Fukushima Daiichi Nuclear Power Station

April, 2016

Chuck Negin
Washington Grove, Maryland, USA
charlesnegin@gmail.com
Damaged Fuel and Debris
Damage Examples
Various Areas for Defueling

- Core Cavity
- Lower Support Grid
- Flow Distributor
- Behind and within the Core Baffle Plates
- Lower Head
- Elsewhere in the Reactor Systems

Bottom of the Upper Core Support Assembly

Reactor Pressure Vessel Cutaway View
Defueling Progress and Key Impacts

1982-1983
Defueling Options Evaluations

1982
First Video of Core

1983
First Sample

1983
Sonar Mapping & Improved Video

1984
Defueling Method Decision
Dry Canal & Mostly Manual

Mid-1984
Vessel Head Lift

Vessel Defueling Progress

Lost Water Clarity

Lower Grid Cutting

Core Former Disassembly

Oct-85
Apr-86
Nov-86
May-87
Dec-87
Jun-88
Jan-89
Aug-89

Feb-86
Dec-1986
April-1987
Sept-1987
Dec-1987
May-1989
Feb-1990

TMI-2 Overview 5
Five concepts for fuel removal *before visual characterization*; none were used:

- Dual Telescoping Tube, Manipulator
- Manual Defueling Cylinder
- Indirect Defueling Cylinder
- Flexible Membrane
- Dry

Later, a remotely operated service arm, shredder, and vacuum transfer system was considered and rejected.

Final method chosen was an adapted mining drill (the core bore) and manual methods.
Core Boring Machine

- Adapted from commercial mining drilling equipment
- One of the most important machines for the project
- First use with hollow core bits: 10 samples 1.8 m long x 6.4 cm diameter (figure below)
- Second use with solid face bits to chew through the hard once-molten mass in the core region
- Third use was assisting lower grid and instrument tubes by grinding metal (next viewgraph)

Tungsten Carbide Teeth with Synthetic Diamond
Fuel Removal Tools and Equipment

- Some Manual Tools

- Powered Equipment
 - Core Boring Machine
 - Plasma Arc
 - Power Assisted shears
 - Bulk Removal
 - Water Vacuum and Air Lift

- Manual Controlled Equipment
 - Grippers
 - Buckets
Work Platform
Three Canister Design – 341 Shipped

271 Fuel & Debris Canisters

10 Knockout Canisters (for vacuum tools)

60 Filter Canisters (water processing)
Packaging & Transport

Canister Staging in Spent Fuel Pool

Transfer Cask Operations
Loading the Shipping Cask

Shipping Cask
Packaging, Transport, & Storage at Idaho

1986 to 1990
341 canisters of fuel & debris in 46 shipments by rail cask to the Idaho National Laboratory

1990 to 2000
Wet Storage in Spent Fuel Storage Pool

2000 – 2001
Removed from pool, dewatered, dried, and placed in dry storage
Possible Remaining Fuel Particulate

- Residual Fuel*
 - RPV: < 900 kg
 - In the Reactor Coolant System: < 133 kg
 - Criticality ruled out by analysis

- Assessment Required a Combination of*
 - Video inspection for locations
 - Gamma dose rate and spectroscopy
 - Passive neutron solid state track recorders, activation, BF3 detectors
 - Active neutron interrogation
 - Alpha Detectors
 - Sample Analysis
Events/Decisions(1)

<table>
<thead>
<tr>
<th>Events/Decisions</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Decisions for removal required visual characterization</td>
<td>First idea of what conditions really were; complete assessment took another year; could not proceed to plan defueling without this knowledge</td>
</tr>
<tr>
<td>Decision to not to install in-core shredding equipment in the vessel</td>
<td>• New application for the proposed technology, concern that failure would cause problems, relied mostly on manual manipulation with power assist
• Allowed defueling to start earlier, knowing that overall schedule would not be minimized. This was preferred over a 3 year development for a remote system/equipment</td>
</tr>
<tr>
<td>Decision to leave refueling canal dry</td>
<td>• Less depth for manually operated tools
• Shielded work platform 2m above the reactor pressure vessel flange
• Reduced need for water processing
• Dose rates were low within the refueling canal</td>
</tr>
<tr>
<td>Use of Core Boring Machine was essential</td>
<td>• Samples of the fuel and debris that was melted together
• Breaking up the crust and molten mass when manual methods were unsuccessful</td>
</tr>
</tbody>
</table>
Events/Decisions (2)

<table>
<thead>
<tr>
<th>Events/Decisions</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unanticipated biological growth in water fouled filters</td>
<td>Caused a year delay; managing water clarity is extremely important</td>
</tr>
</tbody>
</table>
| DOE to take Fuel & Debris New cask design and license Ship Fuel to Idaho by Rail and not Truck | • Handling and shipping design and fabrication could not take place until destination was determined
• Allowed fuel & debris canisters to be removed from TM
• New cask could be designed for the TMI canisters
• Fewer shipments |
| Transfer to Dry Storage | Long term storage stability, also allowed demolition of fuel pool at Idaho |